{ "id": "1501.06107", "version": "v1", "published": "2015-01-25T02:35:42.000Z", "updated": "2015-01-25T02:35:42.000Z", "title": "Root geometry of polynomial sequences I: Type $(0,1)$", "authors": [ "J. L. Gross", "T. Mansour", "T. W. Tucker", "D. G. L. Wang" ], "comment": "24 pages, 1 figure", "categories": [ "math.CO" ], "abstract": "This paper is concerned with the distribution in the complex plane of the roots of a polynomial sequence $\\{W_n(x)\\}_{n\\ge0}$ given by a recursion $W_n(x)=aW_{n-1}(x)+(bx+c)W_{n-2}(x)$, with $W_0(x)=1$ and $W_1(x)=t(x-r)$, where $a>0$, $b>0$, and $c,t,r\\in\\mathbb{R}$. Our results include proof of the distinct-real-rootedness of every such polynomial $W_n(x)$, derivation of the best bound for the zero-set $\\{x\\mid W_n(x)=0\\ \\text{for some $n\\ge1$}\\}$, and determination of three precise limit points of this zero-set. Also, we give several applications from combinatorics and topological graph theory.", "revisions": [ { "version": "v1", "updated": "2015-01-25T02:35:42.000Z" } ], "analyses": { "keywords": [ "polynomial sequence", "root geometry", "precise limit points", "complex plane", "best bound" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150106107G" } } }