{ "id": "1501.05619", "version": "v1", "published": "2015-01-22T20:09:27.000Z", "updated": "2015-01-22T20:09:27.000Z", "title": "Local colourings and monochromatic partitions in complete bipartite graphs", "authors": [ "Richard Lang", "Maya Stein" ], "categories": [ "math.CO" ], "abstract": "We show that for any $2$-local colouring of the edges of a complete bipartite graph, its vertices can be covered with at most $3$ disjoint monochromatic paths. And, we can cover almost all vertices of any complete or complete bipartite $r$-locally coloured graph with $O(r^2)$ disjoint monochromatic cycles.", "revisions": [ { "version": "v1", "updated": "2015-01-22T20:09:27.000Z" } ], "analyses": { "subjects": [ "05C38", "05C55" ], "keywords": [ "complete bipartite graph", "monochromatic partitions", "local colouring", "disjoint monochromatic paths", "disjoint monochromatic cycles" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }