{ "id": "1501.05175", "version": "v1", "published": "2015-01-21T14:17:00.000Z", "updated": "2015-01-21T14:17:00.000Z", "title": "A new approach toward boundedness in a two-dimensional parabolic chemotaxis system with singular sensitivity", "authors": [ "Johannes Lankeit" ], "comment": "11 pages", "categories": [ "math.AP" ], "abstract": "We consider the parabolic chemotaxis model \\[ u_t=\\Delta u - \\chi \\nabla\\cdot(\\frac uv \\nabla v), \\qquad\\qquad v_t=\\Delta v - v + u\\] in a smooth, bounded, convex two-dimensional domain and show global existence and boundedness of solutions for $\\chi\\in(0,\\chi_0)$ for some $\\chi_0>1$, thereby proving that the value $\\chi=1$ is not critical in this regard. Our main tool is consideration of the energy functional \\[ \\mathcal{F}_{a,b}(u,v)=\\int_\\Omega u\\ln u - a \\int_\\Omega u\\ln v + b \\int_\\Omega |\\nabla \\sqrt{v}|^2 \\] for $a>0$, $b\\geq 0$, where using nonzero values of $b$ appears to be new in this context.", "revisions": [ { "version": "v1", "updated": "2015-01-21T14:17:00.000Z" } ], "analyses": { "subjects": [ "35K55", "35A01", "35A09", "92C17", "35A07", "35B40" ], "keywords": [ "two-dimensional parabolic chemotaxis system", "singular sensitivity", "boundedness", "parabolic chemotaxis model", "convex two-dimensional domain" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }