{ "id": "1501.05171", "version": "v1", "published": "2015-01-21T13:56:49.000Z", "updated": "2015-01-21T13:56:49.000Z", "title": "Global weak solutions for the three-dimensional chemotaxis-Navier-Stokes system with nonlinear diffusion", "authors": [ "Qingshan Zhang", "Yuxiang Li" ], "categories": [ "math.AP" ], "abstract": "We consider an initial-boundary value problem for the incompressible chemotaxis-Navier-Stokes equations generalizing the porous-medium-type diffusion model $ \\quad n_t+u\\cdot\\nabla n=\\Delta n^m-\\nabla\\cdot(n\\chi(c)\\nabla c), $ $ \\quad c_t+u\\cdot\\nabla c=\\Delta c-nf(c), $ $ \\quad u_t+\\kappa(u\\cdot\\nabla)u=\\Delta u+\\nabla P+n\\nabla\\Phi, $ $ \\quad \\nabla\\cdot u=0, $ in a bounded convex domain $\\Omega\\subset\\mathbb{R}^3$. It is proved that if $m\\geq\\frac{2}{3}$, $\\kappa\\in\\mathbb{R}$, $0<\\chi\\in C^2([0,\\infty))$, $0\\leq f\\in C^1([0,\\infty))$ with $f(0)=0$ and $\\Phi\\in W^{1,\\infty}(\\Omega)$, then for sufficiently smooth initial data $(n_0, c_0, u_0)$ the model possesses at least one global weak solution.", "revisions": [ { "version": "v1", "updated": "2015-01-21T13:56:49.000Z" } ], "analyses": { "keywords": [ "global weak solution", "three-dimensional chemotaxis-navier-stokes system", "nonlinear diffusion", "porous-medium-type diffusion model", "initial-boundary value problem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150105171Z" } } }