{ "id": "1501.04522", "version": "v1", "published": "2015-01-19T15:27:54.000Z", "updated": "2015-01-19T15:27:54.000Z", "title": "The existential theory of equicharacteristic henselian valued fields", "authors": [ "Will Anscombe", "Arno Fehm" ], "categories": [ "math.LO", "math.AC" ], "abstract": "We study the existential (and parts of the universal-existential) theory of equicharacteristic henselian valued fields. We prove, among other things, an existential Ax-Kochen-Ershov principle, which roughly says that the existential theory of an equicharacteristic henselian valued field (of arbitrary characteristic) is determined by the existential theory of the residue field; in particular, it is independent of the value group. As an immediate corollary, we get an unconditional proof of the decidability of the existential theory of $\\mathbb{F}_{q}((t))$.", "revisions": [ { "version": "v1", "updated": "2015-01-19T15:27:54.000Z" } ], "analyses": { "subjects": [ "03C60", "12L12", "12J10", "11U05", "12L05" ], "keywords": [ "equicharacteristic henselian valued field", "existential theory", "existential ax-kochen-ershov principle", "arbitrary characteristic", "residue field" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150104522A" } } }