{ "id": "1501.04401", "version": "v1", "published": "2015-01-19T06:18:50.000Z", "updated": "2015-01-19T06:18:50.000Z", "title": "Bounds on the number of Diophantine quintuples", "authors": [ "Tim Trudgian" ], "comment": "16 pages", "categories": [ "math.NT" ], "abstract": "We consider Diophantine quintuples $\\{a, b, c, d, e\\}$. These are sets of distinct positive integers, the product of any two elements of which is one less than a perfect square. It is conjectured that there are no Diophantine quintuples; we improve on current estimates to show that there are at most $1.9\\cdot 10^{29}$ Diophantine quintuples.", "revisions": [ { "version": "v1", "updated": "2015-01-19T06:18:50.000Z" } ], "analyses": { "subjects": [ "11D45" ], "keywords": [ "diophantine quintuples", "distinct positive integers", "perfect square", "current estimates" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }