{ "id": "1501.03526", "version": "v1", "published": "2015-01-14T21:54:40.000Z", "updated": "2015-01-14T21:54:40.000Z", "title": "Edwards Curves and Gaussian Hypergeometric Series", "authors": [ "Mohammad Sadek", "Nermine El-Sissi" ], "categories": [ "math.NT" ], "abstract": "Let $E$ be an elliptic curve described by either an Edwards model or a twisted Edwards model over $\\mathbb{F}_p$, namely, $E$ is defined by one of the following equations $x^2+y^2=a^2(1+x^2y^2),\\, a^5-a\\not\\equiv 0$ mod $p$, or, $ax^2+y^2=1+dx^2y^2,\\,ad(a-d)\\not\\equiv0$ mod $p$, respectively. We express the number of rational points of $E$ over $\\mathbb{F}_p$ using the Gaussian hypergeometric series $\\displaystyle {_2F_1}\\left(\\begin{matrix} \\phi&\\phi {} & \\epsilon \\end{matrix}\\Big| x\\right)$ where $\\epsilon$ and $\\phi$ are the trivial and quadratic characters over $\\mathbb{F}_p$ respectively. This enables us to evaluate $|E(\\mathbb{F}_p)|$ for some elliptic curves $E$, and prove the existence of isogenies between $E$ and Legendre elliptic curves over $\\mathbb{F}_p$.", "revisions": [ { "version": "v1", "updated": "2015-01-14T21:54:40.000Z" } ], "analyses": { "keywords": [ "gaussian hypergeometric series", "edwards curves", "legendre elliptic curves", "rational points", "quadratic characters" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }