{ "id": "1501.03129", "version": "v1", "published": "2015-01-13T19:53:48.000Z", "updated": "2015-01-13T19:53:48.000Z", "title": "A proof of the stability of extremal graphs, Simonovits' stability from Szemerédi's regularity", "authors": [ "Zoltán Füredi" ], "comment": "4 pages plus references", "categories": [ "math.CO" ], "abstract": "The following sharpening of Tur\\'an's theorem is proved. Let $T_{n,p}$ denote the complete $p$--partite graph of order $n$ having the maximum number of edges. If $G$ is an $n$-vertex $K_{p+1}$-free graph with $e(T_{n,p})-t$ edges then there exists an (at most) $p$-chromatic subgraph $H_0$ such that $e(H_0)\\geq e(G)-t$. Using this result we present a concise, contemporary proof (i.e., one applying Szemer\\'edi's regularity lemma) for the classical stability result of Simonovits.", "revisions": [ { "version": "v1", "updated": "2015-01-13T19:53:48.000Z" } ], "analyses": { "subjects": [ "05C35" ], "keywords": [ "extremal graphs", "szemerédis regularity", "simonovits", "applying szemeredis regularity lemma", "classical stability result" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable" } } }