{ "id": "1501.03005", "version": "v1", "published": "2015-01-13T13:57:19.000Z", "updated": "2015-01-13T13:57:19.000Z", "title": "Quantitative estimates on Jacobians for hybrid inverse problems", "authors": [ "Giovanni Alessandrini", "Vincenzo Nesi" ], "comment": "15 pages, submitted", "categories": [ "math.AP" ], "abstract": "We consider $\\sigma$-harmonic mappings, that is mappings $U$ whose components $u_i$ solve a divergence structure elliptic equation ${\\rm div} (\\sigma \\nabla u_i)=0$, for $i=1,\\ldots,n $. We investigate whether, with suitably prescribed Dirichlet data, the Jacobian determinant can be bounded away from zero. Results of this sort are required in the treatment of the so-called hybrid inverse problems, and also in the field of homogenization studying bounds for the effective properties of composite materials.", "revisions": [ { "version": "v1", "updated": "2015-01-13T13:57:19.000Z" } ], "analyses": { "subjects": [ "30C62", "35J55" ], "keywords": [ "hybrid inverse problems", "quantitative estimates", "divergence structure elliptic equation", "suitably prescribed dirichlet data", "jacobian determinant" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150103005A" } } }