{ "id": "1501.02857", "version": "v1", "published": "2015-01-13T01:17:50.000Z", "updated": "2015-01-13T01:17:50.000Z", "title": "Characterization of generalized quasi-arithmetic means", "authors": [ "Janusz Matkowski", "Zsolt Páles" ], "categories": [ "math.CA" ], "abstract": "In this paper we characterize generalized quasi-arithmetic means, that is means of the form $M(x_1,\\dots,x_n):=(f_1+\\cdots+f_n)^{-1}(f_1(x_1)+\\cdots+f_n(x_n))$, where $f_1,\\dots,f_n:I\\to\\mathbb{R}$ are strictly increasing and continuous functions. Our characterization involves the Gauss composition of the cyclic mean-type mapping induced by $M$ and a generalized bisymmetry equation.", "revisions": [ { "version": "v1", "updated": "2015-01-13T01:17:50.000Z" } ], "analyses": { "subjects": [ "39B40" ], "keywords": [ "characterization", "gauss composition", "generalized bisymmetry equation", "characterize generalized quasi-arithmetic means", "cyclic mean-type mapping" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150102857M" } } }