{ "id": "1501.02541", "version": "v1", "published": "2015-01-12T04:38:57.000Z", "updated": "2015-01-12T04:38:57.000Z", "title": "On equivariant principal bundles over wonderful compactifications", "authors": [ "Indranil Biswas", "S. Senthamarai Kannan", "D. S. Nagaraj" ], "categories": [ "math.AG" ], "abstract": "Let $G$ be a simple algebraic group of adjoint type over $\\mathbb C$, and let $M$ be the wonderful compactification of a symmetric space $G/H$. Take a $\\widetilde G$--equivariant principal $R$--bundle $E$ on $M$, where $R$ is a complex reductive algebraic group and $\\widetilde G$ is the universal cover of $G$. If the action of the isotropy group $\\widetilde H$ on the fiber of $E$ at the identity coset is irreducible, then we prove that $E$ is polystable with respect to any polarization on $M$. Further, for wonderful compactification of the quotient of $\\text{PSL}(n,{\\mathbb C})$, $n\\,\\neq\\, 4$ (respectively, $\\text{PSL}(2n,{\\mathbb C})$, $n \\geq 2$) by the normalizer of the projective orthogonal group (respectively, the projective symplectic group), we prove that the tangent bundle is stable with respect to any polarization on the wonderful compactification.", "revisions": [ { "version": "v1", "updated": "2015-01-12T04:38:57.000Z" } ], "analyses": { "subjects": [ "32Q26", "14M27", "14M17" ], "keywords": [ "wonderful compactification", "equivariant principal bundles", "simple algebraic group", "complex reductive algebraic group", "adjoint type" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150102541B" } } }