{ "id": "1501.02452", "version": "v1", "published": "2015-01-11T12:07:14.000Z", "updated": "2015-01-11T12:07:14.000Z", "title": "A construction of small (q-1)-regular graphs of girth 8", "authors": [ "M. Abreu", "G. Araujo-Pardo", "C. Balbuena", "D. Labbate" ], "comment": "8 pages, 2 figures", "categories": [ "math.CO" ], "abstract": "In this note we construct a new infinite family of $(q-1)$-regular graphs of girth $8$ and order $2q(q-1)^2$ for all prime powers $q\\ge 16$, which are the smallest known so far whenever $q-1$ is not a prime power or a prime power plus one itself.", "revisions": [ { "version": "v1", "updated": "2015-01-11T12:07:14.000Z" } ], "analyses": { "subjects": [ "05C35", "05C69" ], "keywords": [ "construction", "prime power plus", "regular graphs" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }