{ "id": "1501.02023", "version": "v1", "published": "2015-01-09T03:05:32.000Z", "updated": "2015-01-09T03:05:32.000Z", "title": "Boundary Harnack principle and gradient estimates for fractional Laplacian perturbed by non-local operators", "authors": [ "Zhen-Qing Chen", "Yan-Xia Ren", "Ting Yang" ], "categories": [ "math.PR" ], "abstract": "Suppose $d\\ge 2$ and $0<\\beta<\\alpha<2$. We consider the non-local operator $\\mathcal{L}^{b}=\\Delta^{\\alpha/2}+\\mathcal{S}^{b}$, where $$\\mathcal{S}^{b}f(x):=\\lim_{\\varepsilon\\to 0}\\mathcal{A}(d,-\\beta)\\int_{|z|>\\varepsilon}\\left(f(x+z)-f(x)\\right)\\frac{b(x,z)}{|z|^{d+\\beta}}\\,dy.$$ Here $b(x,z)$ is a bounded measurable function on $\\mathbb{R}^{d}\\times\\mathbb{R}^{d}$ that is symmetric in $z$, and $\\mathcal{A}(d,-\\beta)$ is a normalizing constant so that when $b(x, z)\\equiv 1$, $\\mathcal{S}^{b}$ becomes the fractional Laplacian $\\Delta^{\\beta/2}:=-(-\\Delta)^{\\beta/2}$. In other words, $$\\mathcal{L}^{b}f(x):=\\lim_{\\varepsilon\\to 0}\\mathcal{A}(d,-\\beta)\\int_{|z|>\\varepsilon}\\left(f(x+z)-f(x)\\right) j^b(x, z)\\,dz,$$ where $j^b(x, z):= \\mathcal{A}(d,-\\alpha) |z|^{-(d+\\alpha)}+ \\mathcal{A}(d,-\\beta) b(x, z)|z|^{-(d+\\beta)}$. It is recently established in Chen and Wang [arXiv:1312.7594 [math.PR]] that, when $j^b(x, z)\\geq 0$ on $\\mathbb{R}^d\\times \\mathbb{R}^d$, there is a conservative Feller process $X^{b}$ having $\\mathcal{L}^b$ as its infinitesimal generator. In this paper we establish, under certain conditions on $b$, a uniform boundary Harnack principle for harmonic functions of $X^b$ (or equivalently, of $\\mathcal{L}^b$) in any $\\kappa$-fat open set. We further establish uniform gradient estimates for non-negative harmonic functions of $X^{b}$ in open sets.", "revisions": [ { "version": "v1", "updated": "2015-01-09T03:05:32.000Z" } ], "analyses": { "keywords": [ "fractional laplacian", "non-local operator", "harmonic functions", "uniform boundary harnack principle", "establish uniform gradient estimates" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150102023C" } } }