{ "id": "1501.01944", "version": "v1", "published": "2015-01-08T20:15:00.000Z", "updated": "2015-01-08T20:15:00.000Z", "title": "Separating subadditive Euclidean functionals", "authors": [ "Alan Frieze", "Wesley Pegden" ], "comment": "19 pages, 3 figures", "categories": [ "math.PR", "cs.DM" ], "abstract": "If we are given $n$ random points in the hypercube $[0,1]^d$, then the minimum length of a Traveling Salesperson Tour through the points, the minimum length of a spanning tree, and the minimum length of a matching, etc., are known to be asymptotically $\\beta n^{\\frac{d-1}{d}}$ a.s., where $\\beta$ is an absolute constant in each case. We prove separation results for these constants. In particular, concerning the constants $\\beta_{\\mathrm{TSP}}^d$, $\\beta_{\\mathrm{MST}}^d$, $\\beta_{\\mathrm{MM}}^d$, and $\\beta_{\\mathrm{TF}}^d$ from the asymptotic formulas for the minimum length TSP, spanning tree, matching, and 2-factor, respectively, we prove that $\\beta_{\\mathrm{MST}}^d<\\beta_{\\mathrm{TSP}}^d$, $2\\beta_{\\mathrm{MM}}^d<\\beta_{\\mathrm{TSP}}^d$, and $\\beta_{\\mathrm{TF}}^d<\\beta_{\\mathrm{TSP}}^d$ for all $d\\geq 2$. Our results have some computational relevance, showing that a certain natural class of simple algorithms cannot solve the random Euclidean TSP efficiently.", "revisions": [ { "version": "v1", "updated": "2015-01-08T20:15:00.000Z" } ], "analyses": { "subjects": [ "60C05" ], "keywords": [ "separating subadditive euclidean functionals", "spanning tree", "minimum length tsp", "absolute constant", "random euclidean tsp" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }