{ "id": "1501.01851", "version": "v1", "published": "2015-01-08T14:04:23.000Z", "updated": "2015-01-08T14:04:23.000Z", "title": "Regularity scales and convergence of the Calabi flow", "authors": [ "Haozhao Li", "Bing Wang", "Kai Zheng" ], "comment": "50 pages", "categories": [ "math.DG" ], "abstract": "We define regularity scales to study the behavior of the Calabi flow. Based on estimates of the regularity scales, we obtain convergence theorems of the Calabi flow on extremal Kahler surfaces, under the assumption of global existence of the Calabi flow solutions. Our results partially confirm Donaldson's conjectural picture for the Calabi flow in complex dimension 2. Similar results hold in high dimension with an extra assumption that the scalar curvature is uniformly bounded.", "revisions": [ { "version": "v1", "updated": "2015-01-08T14:04:23.000Z" } ], "analyses": { "keywords": [ "calabi flow", "convergence", "partially confirm donaldsons conjectural picture", "results partially confirm donaldsons conjectural", "extremal kahler surfaces" ], "note": { "typesetting": "TeX", "pages": 50, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150101851L" } } }