{ "id": "1501.01843", "version": "v1", "published": "2015-01-08T13:46:43.000Z", "updated": "2015-01-08T13:46:43.000Z", "title": "On the coefficients of power sums of arithmetic progressions", "authors": [ "András Bazsó", "István Mező" ], "categories": [ "math.NT" ], "abstract": "We investigate the coefficients of the polynomial \\[ S_{m,r}^n(\\ell)=r^n+(m+r)^n+(2m+r)^n+\\cdots+((\\ell-1)m+r)^n. \\] We prove that these can be given in terms of Stirling numbers of the first kind and $r$-Whitney numbers of the second kind. Moreover, we prove a necessary and sufficient condition for the integrity of these coefficients.", "revisions": [ { "version": "v1", "updated": "2015-01-08T13:46:43.000Z" } ], "analyses": { "subjects": [ "11B25", "11B68", "11B73" ], "keywords": [ "arithmetic progressions", "power sums", "coefficients", "sufficient condition", "first kind" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }