{ "id": "1501.01649", "version": "v1", "published": "2015-01-07T21:20:09.000Z", "updated": "2015-01-07T21:20:09.000Z", "title": "Weak and strong moments of l_r-norms of log-concave vectors", "authors": [ "Rafał Latała", "Marta Strzelecka" ], "comment": "13 pages", "categories": [ "math.PR", "math.MG" ], "abstract": "We show that for $p\\geq 1$ and $r\\geq 2$ the $p$-th moment of the $l_r$-norm of a log-concave random vector is comparable to the sum of the first moment and the weak $p$-th moment up to a constant proportional to $r$. This extends the previous result of Paouris concerning Euclidean norms.", "revisions": [ { "version": "v1", "updated": "2015-01-07T21:20:09.000Z" } ], "analyses": { "subjects": [ "60E15", "46B09", "52A38" ], "keywords": [ "strong moments", "log-concave vectors", "th moment", "log-concave random vector", "paouris concerning euclidean norms" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }