{ "id": "1501.01414", "version": "v1", "published": "2015-01-07T09:39:06.000Z", "updated": "2015-01-07T09:39:06.000Z", "title": "On Fractional Schrodinger Equations in sobolev spaces", "authors": [ "Younghun Hong", "Yannick Sire" ], "categories": [ "math.AP" ], "abstract": "Let $\\sigma\\in(0,1)$ with $\\sigma\\neq\\frac{1}{2}$. We investigate the fractional nonlinear Schr\\\"odinger equation in $\\mathbb R^d$: $$i\\partial_tu+(-\\Delta)^\\sigma u+\\mu|u|^{p-1}u=0,\\, u(0)=u_0\\in H^s,$$ where $(-\\Delta)^\\sigma$ is the Fourier multiplier of symbol $|\\xi|^{2\\sigma}$, and $\\mu=\\pm 1$. This model has been introduced by Laskin in quantum physics \\cite{laskin}. We establish local well-posedness and ill-posedness in Sobolev spaces for power-type nonlinearities.", "revisions": [ { "version": "v1", "updated": "2015-01-07T09:39:06.000Z" } ], "analyses": { "keywords": [ "fractional schrodinger equations", "sobolev spaces", "fourier multiplier", "power-type nonlinearities", "quantum physics" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150101414H" } } }