{ "id": "1501.01003", "version": "v1", "published": "2015-01-05T21:05:07.000Z", "updated": "2015-01-05T21:05:07.000Z", "title": "Extreme values of class numbers of real quadratic fields", "authors": [ "Youness Lamzouri" ], "comment": "10 pages", "categories": [ "math.NT" ], "abstract": "We improve a result of H. L. Montgomery and J. P. Weinberger by establishing the existence of infinitely many fundamental discriminants $d>0$ for which the class number of the real quadratic field $\\mathbb{Q}(\\sqrt{d})$ exeeds $(2e^{\\gamma}+o(1)) \\sqrt{d}(\\log\\log d)/\\log d$. We believe this bound to be best possible. We also obtain a lower bound (unconditionally) and an upper bound (assuming GRH), of nearly the same order of magnitude, for the number of real quadratic fields with discriminant $d\\leq x$ which have such an extreme class number.", "revisions": [ { "version": "v1", "updated": "2015-01-05T21:05:07.000Z" } ], "analyses": { "keywords": [ "real quadratic field", "extreme values", "extreme class number", "fundamental discriminants", "lower bound" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150101003L" } } }