{ "id": "1501.00816", "version": "v1", "published": "2015-01-05T11:06:26.000Z", "updated": "2015-01-05T11:06:26.000Z", "title": "Kernel estimates for Schrödinger type operators with unbounded diffusion and potential terms", "authors": [ "Anna Canale", "Abdelaziz Rhandi", "Cristian Tacelli" ], "categories": [ "math.AP" ], "abstract": "We prove that the heat kernel associated to the Schr\\\"odinger type operator $(1+|x|^\\alpha)\\Delta-|x|^\\beta$ satisfies the estimate $$k(t,x,y)\\leq c_1e^{\\lambda_0t}e^{c_2t^{-b}}\\frac{(|x||y|)^{-\\frac{N-1}{2}-\\frac{\\beta-\\alpha}{4}}}{1+|y|^\\alpha} e^{-\\int_1^{|x|}\\frac{s^{\\beta/2}}{\\sqrt{1+s^\\alpha}}\\,ds} e^{-\\int_1^{|y|}\\frac{s^{\\beta/2}}{\\sqrt{1+s^\\alpha}}\\,ds} $$ for $t>0,|x|,|y|\\ge 1$, where $c_1,c_2$ are positive constants and $b=\\frac{\\beta-\\alpha+2}{\\beta+\\alpha-2}$ provided that for $N>2,\\,\\alpha\\geq 2$ and $\\beta>\\alpha-2$. We also obtain an estimate of the eigenfunctions of $A$.", "revisions": [ { "version": "v1", "updated": "2015-01-05T11:06:26.000Z" } ], "analyses": { "subjects": [ "35K08", "35K10", "35J10", "47D07" ], "keywords": [ "schrödinger type operators", "kernel estimates", "potential terms", "unbounded diffusion", "heat kernel" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150100816C" } } }