{ "id": "1501.00616", "version": "v1", "published": "2015-01-04T00:55:34.000Z", "updated": "2015-01-04T00:55:34.000Z", "title": "Global Regularity for the 2+1 Dimensional Equivariant Einstein-Wave Map System", "authors": [ "Lars Andersson", "Nishanth Gudapati", "Jeremie Szeftel" ], "categories": [ "math.AP" ], "abstract": "In this paper we consider the equivariant 2+1 dimensional Einstein-wave map system and show that if the target satisfies the so called Grillakis condition, then global existence holds. In view of the fact that the 3+1 vacuum Einstein equations with a spacelike translational Killing field reduce to a 2+1 dimensional Einstein-wave map system with target the hyperbolic plane, which in particular satisfies the Grillakis condition, this work proves global existence for the equivariant class of such spacetimes.", "revisions": [ { "version": "v1", "updated": "2015-01-04T00:55:34.000Z" } ], "analyses": { "keywords": [ "dimensional equivariant einstein-wave map system", "global regularity", "dimensional einstein-wave map system", "translational killing field reduce" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150100616A" } } }