{ "id": "1412.8358", "version": "v1", "published": "2014-12-29T14:51:24.000Z", "updated": "2014-12-29T14:51:24.000Z", "title": "Odd graphs and its application on the strong edge coloring", "authors": [ "Tao Wang", "Xiaodan Zhao" ], "comment": "6 pages", "categories": [ "math.CO", "cs.DM" ], "abstract": "A strong edge coloring of a graph is a proper edge coloring in which every color class is an induced matching. The strong chromatic index $\\chiup_{s}'(G)$ of a graph $G$ is the minimum number of colors in a strong edge coloring of $G$. Let $\\Delta \\geq 4$ be an integer. In this note, we study the properties of the odd graphs, and show that every planar graph with maximum degree at most $\\Delta$ and girth at least $10 \\Delta - 4$ has a strong edge coloring using $2\\Delta - 1$ colors.", "revisions": [ { "version": "v1", "updated": "2014-12-29T14:51:24.000Z" } ], "analyses": { "subjects": [ "05C15" ], "keywords": [ "strong edge coloring", "odd graphs", "application", "strong chromatic index", "color class" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1412.8358W" } } }