{ "id": "1412.8337", "version": "v1", "published": "2014-12-29T13:42:09.000Z", "updated": "2014-12-29T13:42:09.000Z", "title": "Renormalization of $C^r$ Hénon map : Two dimensional embedded map in three dimension", "authors": [ "Young Woo Nam" ], "comment": "24 pages", "categories": [ "math.DS" ], "abstract": "We study renormalization of highly dissipative analytic three dimensional H\\'enon maps $$ F(x,y,z) = (f(x) - \\varepsilon(x,y,z),\\ x,\\ \\delta(x,y,z)) $$ where $ \\varepsilon(x,y,z) $ is a sufficiently small perturbation of $ \\varepsilon_{2d}(x,y) $. Under certain conditions, $ C^r $ single invariant surfaces each of which is tangent to the invariant plane field over the critical Cantor set exist for $ 2 \\leq r < \\infty $. The $ C^r $ conjugation from an invariant surface to the $ xy- $plane defines renormalization two dimensional $ C^r $ H\\'enon-like map. It also defines two dimensional embedded $ C^r $ H\\'enon-like maps in three dimension. In this class, universality theorem is re-constructed by conjugation. Geometric properties on the critical Cantor set in invariant surfaces are the same as those of two dimensional maps --- non existence of the continuous line field and unbounded geometry. The set of embedded two dimensional H\\'enon-like maps is open and dense subset of the parameter space of average Jacobian, $ b_{F_{2d}} $ for any given smoothness, $ 2 \\leq r < \\infty $.", "revisions": [ { "version": "v1", "updated": "2014-12-29T13:42:09.000Z" } ], "analyses": { "subjects": [ "37Cxx" ], "keywords": [ "dimensional embedded map", "hénon map", "henon-like map", "critical cantor set", "dimensional henon maps" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1412.8337N" } } }