{ "id": "1412.8334", "version": "v1", "published": "2014-12-29T13:28:42.000Z", "updated": "2014-12-29T13:28:42.000Z", "title": "Topological recursion for irregular spectral curves", "authors": [ "Norman Do", "Paul Norbury" ], "comment": "28 pages", "categories": [ "math.GT", "math-ph", "math.CO", "math.MP" ], "abstract": "We study topological recursion on the irregular spectral curve $xy^2-xy+1=0$, which produces a weighted count of dessins d'enfant. This analysis is then applied to topological recursion on the spectral curve $xy^2=1$, which takes the place of the Airy curve $x=y^2$ to describe asymptotic behaviour of enumerative problems associated to irregular spectral curves. In particular, we calculate all one-point invariants of the spectral curve $xy^2=1$ via a new three-term recursion for the number of dessins d'enfant with one face.", "revisions": [ { "version": "v1", "updated": "2014-12-29T13:28:42.000Z" } ], "analyses": { "subjects": [ "14N10", "05A15", "32G15" ], "keywords": [ "irregular spectral curve", "dessins denfant", "study topological recursion", "one-point invariants", "asymptotic behaviour" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1412.8334D" } } }