{ "id": "1412.8106", "version": "v1", "published": "2014-12-28T04:39:21.000Z", "updated": "2014-12-28T04:39:21.000Z", "title": "Monoidal categorification of cluster algebras", "authors": [ "Seok-Jin Kang", "Masaki Kashiwara", "Myungho Kim", "Se-jin Oh" ], "comment": "44 pages", "categories": [ "math.RT", "math.QA" ], "abstract": "We give a definition of monoidal categorifications of quantum cluster algebras and provide a criterion for a monoidal category of finite-dimensional graded $R$-modules to become a monoidal categorification of a quantum cluster algebra, where $R$ is a symmetric Khovanov-Lauda-Rouquier algebra. Roughly speaking, this criterion asserts that a quantum monoidal seed can be mutated successively in all the directions once the first-step mutations are possible. In the course of the study, we also give a proof of a conjecture of Leclerc on the product of upper global basis elements.", "revisions": [ { "version": "v1", "updated": "2014-12-28T04:39:21.000Z" } ], "analyses": { "subjects": [ "13F60", "81R50", "17B37" ], "keywords": [ "monoidal categorification", "quantum cluster algebra", "upper global basis elements", "symmetric khovanov-lauda-rouquier algebra", "monoidal category" ], "note": { "typesetting": "TeX", "pages": 44, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1412.8106K" } } }