{ "id": "1412.7738", "version": "v1", "published": "2014-12-24T19:19:13.000Z", "updated": "2014-12-24T19:19:13.000Z", "title": "Yang-Mills-Higgs connections on Calabi-Yau manifolds", "authors": [ "Indranil Biswas", "Ugo Bruzzo", "Alessio Lo Giudice" ], "comment": "13 pages", "categories": [ "math.AG", "math.DG" ], "abstract": "Let $X$ be a compact connected K\\\"ahler--Einstein manifold with $c_1(TX)\\, \\geq\\, 0$. If there is a polystable Higgs vector bundle $(E\\,,\\theta)$ on $X$ with $\\theta\\,\\not=\\, 0$, then we show that $c_1(TX)\\,=\\,0$; any $X$ satisfying this condition is called a Calabi-Yau manifold, and it admits a Ricci-flat K\\\"ahler form \\cite{Ya}. Let $(E\\,,\\theta)$ be a polystable Higgs vector bundle on a compact Ricci-flat K\\\"ahler manifold $X$. Let $h$ be an Hermitian structure on $E$ satisfying the Yang-Mills-Higgs equation for $(E\\,,\\theta)$. We prove that $h$ also satisfies the Yang-Mills-Higgs equation for $(E\\,,0)$. A similar result is proved for Hermitian structures on principal Higgs bundles on $X$ satisfying the Yang-Mills-Higgs equation.", "revisions": [ { "version": "v1", "updated": "2014-12-24T19:19:13.000Z" } ], "analyses": { "subjects": [ "14J32", "53C07", "58E15" ], "keywords": [ "calabi-yau manifold", "yang-mills-higgs connections", "polystable higgs vector bundle", "yang-mills-higgs equation", "hermitian structure" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "inspire": 1335884, "adsabs": "2014arXiv1412.7738B" } } }