{ "id": "1412.7081", "version": "v1", "published": "2014-12-22T18:27:09.000Z", "updated": "2014-12-22T18:27:09.000Z", "title": "$δ$(3)-ideal null 2-type hypersurfaces in Euclidean spaces", "authors": [ "Bang-Yen Chen", "Yu Fu" ], "comment": "14 pages, to appear in Differential Geometry and Its Applications", "categories": [ "math.DG" ], "abstract": "In the theory of finite type submanifolds, null 2-type submanifolds are the most simple ones, besides 1-type submanifolds (cf. e.g., [3, 12]). In particular, the classification problems of null 2-type hypersurfaces are quite interesting and of fundamentally important. In this paper, we prove that every $\\delta$(3)-ideal null 2-type hypersurface in a Euclidean space has constant mean curvature and constant scalar curvature.", "revisions": [ { "version": "v1", "updated": "2014-12-22T18:27:09.000Z" } ], "analyses": { "subjects": [ "53C40", "53C42" ], "keywords": [ "euclidean space", "hypersurface", "constant scalar curvature", "finite type submanifolds", "constant mean curvature" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1412.7081C" } } }