{ "id": "1412.6984", "version": "v1", "published": "2014-12-22T14:06:35.000Z", "updated": "2014-12-22T14:06:35.000Z", "title": "A counterexample to a conjecture of Ghosh", "authors": [ "Hung Hua", "Elliot Krop", "Christopher Raridan" ], "comment": "4 pages", "categories": [ "math.CO" ], "abstract": "We answer two questions of Shamik Ghosh in the negative. We show that there exists a lobster tree of diameter less than 6 which accepts no alpha-labeling with two central vertices labeled by the critical number and the maximum vertex label. We also show a simple example of a tree of diameter 4, with an even degree central vertex which does not accept a maximum label in any graceful labeling.", "revisions": [ { "version": "v1", "updated": "2014-12-22T14:06:35.000Z" } ], "analyses": { "keywords": [ "counterexample", "conjecture", "degree central vertex", "maximum vertex label", "shamik ghosh" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1412.6984H" } } }