{ "id": "1412.6795", "version": "v1", "published": "2014-12-21T15:13:17.000Z", "updated": "2014-12-21T15:13:17.000Z", "title": "Hardy-Littlewood Maximal Operator And $BLO^{1/\\log}$ Class of Exponents", "authors": [ "Tengiz Kopaliani", "Shalva Zviadadze" ], "comment": "6 pages", "categories": [ "math.CA" ], "abstract": "It is well known that if Hardy-Littlewood maximal operator is bounded in space $L^{p(\\cdot)}[0;1]$ then $1/p(\\cdot)\\in BMO^{1/\\log}$. On the other hand if $p(\\cdot)\\in BMO^{1/\\log},$ ($10$ such that Hardy-Littlewood maximal operator is bounded in $L^{p(\\cdot)+c}[0;1].$ Also There exists exponent $p(\\cdot)\\in BMO^{1/\\log},$ ($1