{ "id": "1412.6639", "version": "v1", "published": "2014-12-20T10:40:47.000Z", "updated": "2014-12-20T10:40:47.000Z", "title": "A geometric Hall-type theorem", "authors": [ "Andreas Holmsen", "Leonardo Martinez-Sandoval", "Luis Montejano" ], "categories": [ "math.CO" ], "abstract": "We introduce a geometric generalization of Hall's marriage theorem. Given a family $F = \\{X_1, \\dots, X_m\\}$ of finite sets in $\\mathbb{R}^d$, we give conditions under which it is possible to chose a point $x_i\\in X_i$, in such a way that the points $\\{x_1,...,x_m\\}\\subset \\mathbb{R}^d$ are in general position. The proof uses topological techniques in the spirit of Aharoni and Haxell's celebrated generalization of Hall's theorem.", "revisions": [ { "version": "v1", "updated": "2014-12-20T10:40:47.000Z" } ], "analyses": { "keywords": [ "geometric hall-type theorem", "halls marriage theorem", "halls theorem", "haxells celebrated generalization", "general position" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1412.6639H" } } }