{ "id": "1412.6420", "version": "v1", "published": "2014-12-19T16:31:11.000Z", "updated": "2014-12-19T16:31:11.000Z", "title": "Bound States for Nano-Tubes with a Dislocation", "authors": [ "Rainer Hempel", "Martin Kohlmann", "Marko Stautz", "Jürgen Voigt" ], "comment": "28 pages", "categories": [ "math-ph", "math.MP", "math.SP" ], "abstract": "As a model for an interface in solid state physics, we consider two real-valued potentials $V^{(1)}$ and $V^{(2)}$ on the cylinder or tube $S=\\mathbb R \\times (\\mathbb R/\\mathbb Z)$ where we assume that there exists an interval $(a_0,b_0)$ which is free of spectrum of $-\\Delta+V^{(k)}$ for $k=1,2$. We are then interested in the spectrum of $H_t = -\\Delta + V_t$, for $t \\in \\mathbb R$, where $V_t(x,y) = V^{(1)}(x,y)$, for $x > 0$, and $V_t(x,y) = V^{(2)}(x+t,y)$, for $x < 0$. While the essential spectrum of $H_t$ is independent of $t$, we show that discrete spectrum, related to the interface at $x = 0$, is created in the interval $(a_0, b_0)$ at suitable values of the parameter $t$, provided $-\\Delta + V^{(2)}$ has some essential spectrum in $(-\\infty, a_0]$. We do not require $V^{(1)}$ or $V^{(2)}$ to be periodic. We furthermore show that the discrete eigenvalues of $H_t$ are Lipschitz continuous functions of $t$ if the potential $V^{(2)}$ is locally of bounded variation.", "revisions": [ { "version": "v1", "updated": "2014-12-19T16:31:11.000Z" } ], "analyses": { "subjects": [ "35J10", "35P20", "81Q10" ], "keywords": [ "bound states", "essential spectrum", "dislocation", "nano-tubes", "solid state physics" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1412.6420H" } } }