{ "id": "1412.6384", "version": "v1", "published": "2014-12-19T15:40:25.000Z", "updated": "2014-12-19T15:40:25.000Z", "title": "Asymmetrical holes for the $β$-transformation", "authors": [ "Lyndsey Clark" ], "comment": "20 pages, 6 figures", "categories": [ "math.DS" ], "abstract": "This paper extends those of Glendinning and Sidorov [3] and of Hare and Sidorov [6] from the case of the doubling map to the more general $\\beta$-transformation. Let $\\beta \\in (1,2)$ and consider the $\\beta$-transformation $T_{\\beta}(x)=\\beta x \\pmod 1$. Let $\\mathcal{J}_{\\beta} (a,b) := \\{ x \\in (0,1) : T_{\\beta}^n(x) \\notin (a,b) \\text{ for all } n \\geq 0 \\}$. An integer $n$ is bad for $(a,b)$ if every $n$-cycle for $T_{\\beta}$ intersects $(a,b)$. Denote the set of all bad $n$ for $(a,b)$ by $B_\\beta(a,b)$. In this paper we completely describe the following sets: \\[ D_0(\\beta) = \\{ (a,b) \\in [0,1)^2 : \\mathcal{J}_{\\beta}(a,b) \\neq \\emptyset \\}, \\] \\[ D_1(\\beta) = \\{ (a,b) \\in [0,1)^2 : \\mathcal{J}_{\\beta}(a,b) \\text{ is uncountable} \\}, \\] \\[ D_2(\\beta) = \\{ (a,b) \\in [0,1)^2 : B_\\beta(a,b) \\text{ is finite} \\}. \\]", "revisions": [ { "version": "v1", "updated": "2014-12-19T15:40:25.000Z" } ], "analyses": { "subjects": [ "28D05", "37B10", "68R15" ], "keywords": [ "asymmetrical holes", "transformation", "paper extends", "intersects" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1412.6384C" } } }