{ "id": "1412.6333", "version": "v1", "published": "2014-12-19T13:21:43.000Z", "updated": "2014-12-19T13:21:43.000Z", "title": "The continuum random tree is the scaling limit of unlabelled unrooted trees", "authors": [ "Benedikt Stufler" ], "categories": [ "math.PR" ], "abstract": "We prove that the uniform unlabelled unrooted tree with $n$ vertices converges in the Gromov-Hausdorff sense after a suitable rescaling to the Brownian continuum random tree. This proves a conjecture by Aldous. We also treat the case of vertex-degree restrictions.", "revisions": [ { "version": "v1", "updated": "2014-12-19T13:21:43.000Z" } ], "analyses": { "subjects": [ "60F17", "60C05", "05C05" ], "keywords": [ "scaling limit", "brownian continuum random tree", "uniform unlabelled unrooted tree", "vertices converges", "gromov-hausdorff sense" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1412.6333S" } } }