{ "id": "1412.6022", "version": "v1", "published": "2014-12-18T19:30:06.000Z", "updated": "2014-12-18T19:30:06.000Z", "title": "Ground states of nonlinear Schrödinger equations with sum of periodic and inverse-square potentials", "authors": [ "Qianqiao Guo", "Jarosław Mederski" ], "categories": [ "math.AP" ], "abstract": "We study the existence of solutions of the following nonlinear Schr\\\"odinger equation \\begin{equation*} -\\Delta u + \\Big(V(x)-\\frac{\\mu}{|x|^2}\\Big) u = f(x,u) \\hbox{ for } x\\in\\mathbb{R}^N\\setminus\\{0\\}, \\end{equation*} where $V:\\mathbb{R}^N\\to\\mathbb{R}$ and $f:\\mathrm{R}^N\\times\\mathbb{R}\\to\\mathbb{R}$ are periodic in $x\\in\\mathbb{R}$. We assume that $0$ does not lie in the spectrum of $-\\Delta+V$ and $\\mu<\\frac{(N-2)^2}{4}$, $N\\geq 3$. The superlinear and subcritical term $f$ satisfies a weak monotonicity condition. For sufficiently small $\\mu\\geq 0$ we find a ground state solution as a minimizer of the energy functional on a natural constraint. If $\\mu<0$ and $0$ lies below the spectrum of $-\\Delta+V$, then ground state solutions do not exist.", "revisions": [ { "version": "v1", "updated": "2014-12-18T19:30:06.000Z" } ], "analyses": { "subjects": [ "35Q55", "35J10", "35J20", "58E05" ], "keywords": [ "nonlinear schrödinger equations", "inverse-square potentials", "ground state solution", "weak monotonicity condition", "natural constraint" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1412.6022G" } } }