{ "id": "1412.5463", "version": "v1", "published": "2014-12-17T16:23:46.000Z", "updated": "2014-12-17T16:23:46.000Z", "title": "On the Schrödinger-Poisson system with steep potential well and indefinite potential", "authors": [ "Juntao Sun", "Tsung-fang Wu", "Yuanze Wu" ], "comment": "17 pages", "categories": [ "math.AP" ], "abstract": "In this paper, we study the following Schr\\\"odinger-Poisson system: $$ \\left\\{\\aligned&-\\Delta u+V_\\lambda(x)u+K(x)\\phi u=f(x,u)&\\quad\\text{in }\\bbr^3,\\\\ &-\\Delta\\phi=K(x)u^2&\\quad\\text{in }\\bbr^3,\\\\ &(u,\\phi)\\in\\h\\times\\D,\\endaligned\\right.\\eqno{(\\mathcal{SP}_{\\lambda})} $$ where $V_\\lambda(x)=\\lambda a(x)+b(x)$ with a positive parameter $\\lambda$, $K(x)\\geq0$ and $f(x,t)$ is continuous including the power-type nonlinearity $|u|^{p-2}u$. By applying the method of penalized functions, the existence of one nontrivial solution for such system in the less-studied case $3