{ "id": "1412.5415", "version": "v1", "published": "2014-12-10T00:38:55.000Z", "updated": "2014-12-10T00:38:55.000Z", "title": "Proof of some conjectures of Z.-W. Sun on the divisibility of certain double-sums", "authors": [ "Victor J. W. Guo", "Ji-Cai Liu" ], "comment": "8 pages", "categories": [ "math.NT", "math.CO" ], "abstract": "Z.-W. Sun introduced three kinds of numbers: \\begin{align*}S_n=\\sum_{k=0}^{n}{n\\choose k}^2{2k\\choose k}(2k+1),\\qquad s_n=\\sum_{k=0}^{n}{n\\choose k}^2{2k\\choose k}\\frac{1}{2k-1}, \\end{align*} and $S_n^{+}=\\sum_{k=0}^{n}{n\\choose k}^2{2k\\choose k}(2k+1)^2$. In this paper we mainly prove that \\begin{align*} 4\\sum_{k=0}^{n-1}kS_k\\equiv \\sum_{k=0}^{n-1}s_k\\equiv \\sum_{k=0}^{n-1}S_k^{+}\\equiv 0\\pmod{n^2}\\quad\\text{for $n\\geqslant 1$}, \\end{align*} by establishing some binomial coefficient identities, such as \\begin{align*} 4\\sum_{k=0}^{n-1}kS_k=n^2\\sum_{k=0}^{n-1}\\frac{1}{k+1}{2k\\choose k}(6k{n-1\\choose k}^2+{n-1\\choose k}{n-1\\choose k+1}). \\end{align*} This confirms several recent conjectures of Z.-W. Sun.", "revisions": [ { "version": "v1", "updated": "2014-12-10T00:38:55.000Z" } ], "analyses": { "subjects": [ "11A07", "11B65", "05A10" ], "keywords": [ "conjectures", "divisibility", "double-sums" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1412.5415G" } } }