{ "id": "1412.4386", "version": "v2", "published": "2014-12-14T17:53:03.000Z", "updated": "2015-01-08T15:39:41.000Z", "title": "Weak subdifferentials, $r_L$-density and maximal monotonicity", "authors": [ "Stephen Simons", "Xianfu Wang" ], "comment": "13 pages", "doi": "10.1007/s11228-015-0326-7", "categories": [ "math.FA" ], "abstract": "In this paper, we first investigate an abstract subdifferential for which (using Ekeland's variational principle) we can prove an analog of the Br{\\o}ndsted-Rockafellar property. We introduce the \"$r_L$-density\" of a subset of the product of a Banach space with its dual. A closed $r_L$-dense monotone set is maximally monotone, but we will also consider the case of nonmonotone closed $r_L$-dense sets. As a special case of our results, we can prove Rockafellar's result that the subdifferential of a proper convex lower semicontinuous function is maximally monotone.", "revisions": [ { "version": "v1", "updated": "2014-12-14T17:53:03.000Z", "comment": "11 pages", "journal": null, "doi": null }, { "version": "v2", "updated": "2015-01-08T15:39:41.000Z" } ], "analyses": { "subjects": [ "49J52", "47H04", "47H05", "65K10" ], "keywords": [ "weak subdifferentials", "maximal monotonicity", "proper convex lower semicontinuous function", "ekelands variational principle", "maximally monotone" ], "tags": [ "journal article" ], "publication": { "publisher": "Springer" }, "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1412.4386S" } } }