{ "id": "1412.4338", "version": "v1", "published": "2014-12-14T11:01:02.000Z", "updated": "2014-12-14T11:01:02.000Z", "title": "Heat kernel estimates for random walks with degenerate weights", "authors": [ "Sebastian Andres", "Jean-Dominique Deuschel", "Martin Slowik" ], "comment": "16 pages", "categories": [ "math.PR", "math.AP" ], "abstract": "We establish Gaussian-type upper bounds on the heat kernel for a continuous-time random walk on a graph with unbounded weights under an ergodicity assumption. For the proof we use Davies' perturbation method, where we show a maximal inequality for the perturbed heat kernel via Moser iteration.", "revisions": [ { "version": "v1", "updated": "2014-12-14T11:01:02.000Z" } ], "analyses": { "subjects": [ "39A12", "60J35", "60K37", "82C41" ], "keywords": [ "heat kernel estimates", "degenerate weights", "establish gaussian-type upper bounds", "continuous-time random walk", "ergodicity assumption" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1412.4338A" } } }