{ "id": "1412.3309", "version": "v1", "published": "2014-12-10T14:03:29.000Z", "updated": "2014-12-10T14:03:29.000Z", "title": "On the Peterson hit problem", "authors": [ "Nguyen Sum" ], "comment": "68 pages, Quy Nhon University preprint, Viet Nam, 2011", "categories": [ "math.AT" ], "abstract": "We study the hit problem, set up by F. Peterson, of finding a minimal set of generators for the polynomial algebra $P_k := \\mathbb F_2[x_1,x_2,...,x_k]$ as a module over the mod-2 Steenrod algebra, $\\mathcal{A}$. In this paper, we study a minimal set of generators for $\\mathcal A$-module $P_k$ in some so-call generic degrees and apply these results to explicitly determine the hit problem for $k=4$.", "revisions": [ { "version": "v1", "updated": "2014-12-10T14:03:29.000Z" } ], "analyses": { "subjects": [ "55S10", "55S05", "55T15" ], "keywords": [ "peterson hit problem", "minimal set", "so-call generic degrees", "generators", "polynomial algebra" ], "note": { "typesetting": "TeX", "pages": 68, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1412.3309S" } } }