{ "id": "1412.3149", "version": "v1", "published": "2014-12-09T22:59:54.000Z", "updated": "2014-12-09T22:59:54.000Z", "title": "The defocusing nonlinear Schrödinger equation with $t$-periodic data: New exact solutions", "authors": [ "Jonatan Lenells" ], "comment": "25 pages", "categories": [ "math.AP", "nlin.SI" ], "abstract": "We consider solutions of the defocusing nonlinear Schr\\\"odinger (NLS) equation on the half-line whose Dirichlet and Neumann boundary values become periodic for sufficiently large $t$. We prove a theorem which, modulo certain assumptions, characterizes the pairs of periodic functions which can arise as Dirichlet and Neumann values for large $t$ in this way. The theorem also provides a constructive way of determining explicit solutions with the given periodic boundary values. Hence our approach leads to a class of new exact solutions of the defocusing NLS equation on the half-line.", "revisions": [ { "version": "v1", "updated": "2014-12-09T22:59:54.000Z" } ], "analyses": { "subjects": [ "35Q55", "37K15" ], "keywords": [ "defocusing nonlinear schrödinger equation", "exact solutions", "periodic data", "periodic boundary values", "neumann boundary values" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1412.3149L" } } }