{ "id": "1412.2650", "version": "v1", "published": "2014-12-08T16:20:29.000Z", "updated": "2014-12-08T16:20:29.000Z", "title": "Equivalence of modes of convergence on reproducing kernel Hilbert spaces", "authors": [ "D. Azevedo" ], "categories": [ "math.FA" ], "abstract": "Let $(X,\\mu)$ be a strictly-positive Borel measure space. We show that the modes of convergence in a reproducing kernel Hilbert (RKHS) space, pointwise, weak, strong are all equivalents. From this we describe some important consequences such as an association with positive operators and positive definite kernels and a compact embedding condition for a RKHS in $L^{2}(X,\\mu)$.", "revisions": [ { "version": "v1", "updated": "2014-12-08T16:20:29.000Z" } ], "analyses": { "subjects": [ "46E22", "40A30", "47B32", "47B65", "57R40" ], "keywords": [ "reproducing kernel hilbert spaces", "convergence", "equivalence", "strictly-positive borel measure space", "compact embedding condition" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1412.2650A" } } }