{ "id": "1412.2445", "version": "v1", "published": "2014-12-08T04:50:35.000Z", "updated": "2014-12-08T04:50:35.000Z", "title": "Fluctuations of Linear Eigenvalue Statistics of Random Band Matrices", "authors": [ "Indrajit Jana", "Koushik Saha", "Alexander Soshnikov" ], "categories": [ "math.PR" ], "abstract": "In this paper, we study the fluctuation of linear eigenvalue statistics of Random Band Matrices defined by $M_{n}=\\frac{1}{\\sqrt{b_{n}}}W_{n}$, where $W_{n}$ is a $n\\times n$ band Hermitian random matrix of bandwidth $b_{n}$, i.e., the diagonal elements and only first $b_{n}$ off diagonal elements are nonzero. Also variances of the matrix elmements are upto a order of constant. We study the linear eigenvalue statistics $\\mathcal{N}(\\phi)=\\sum_{i=1}^{n}\\phi(\\lambda_{i})$ of such matrices, where $\\lambda_{i}$ are the eigenvalues of $M_{n}$ and $\\phi$ is a sufficiently smooth function. We prove that $\\sqrt{\\frac{b_{n}}{n}}[\\mathcal{N}(\\phi)-\\mathbb{E} \\mathcal{N}(\\phi)]\\stackrel{d}{\\to} N(0,V(\\phi))$ for $b_{n}>>\\sqrt{n}$, where $V(\\phi)$ is given in the Theorem 1.", "revisions": [ { "version": "v1", "updated": "2014-12-08T04:50:35.000Z" } ], "analyses": { "keywords": [ "linear eigenvalue statistics", "fluctuation", "band hermitian random matrix", "diagonal elements", "smooth function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1412.2445J" } } }