{ "id": "1412.1426", "version": "v1", "published": "2014-12-03T18:28:57.000Z", "updated": "2014-12-03T18:28:57.000Z", "title": "Alpha invariants and coercivity of the Mabuchi functional on Fano manifolds", "authors": [ "Ruadhaí Dervan" ], "comment": "13 pages, comments welcome", "categories": [ "math.DG", "math.CV" ], "abstract": "We give a criterion for the coercivity of the Mabuchi functional for general K\\\"ahler classes on Fano manifolds in terms of Tian's alpha invariant. This generalises a result of Tian in the anti-canonical case implying the existence of a K\\\"ahler-Einstein metric. As an application, we provide new K\\\"ahler classes on a general degree one del Pezzo surface for which the Mabuchi functional is coercive.", "revisions": [ { "version": "v1", "updated": "2014-12-03T18:28:57.000Z" } ], "analyses": { "keywords": [ "mabuchi functional", "fano manifolds", "coercivity", "tians alpha invariant", "del pezzo surface" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1412.1426D" } } }