{ "id": "1412.1242", "version": "v1", "published": "2014-12-03T09:22:08.000Z", "updated": "2014-12-03T09:22:08.000Z", "title": "A universal divergence rate for symmetric Birkhoff Sums in infinite ergodic theory", "authors": [ "Zemer Kosloff" ], "comment": "13 pages", "categories": [ "math.DS" ], "abstract": "We show that there exists a universal gap in the failure of the ergodic theorem for symmetric Birkhoff sums in infinite ergodic theory. In addition, an application of this result to a question of fluctuations of the Birkhoff integrals of horocyclic flows on geometrically finite surfaces is given.", "revisions": [ { "version": "v1", "updated": "2014-12-03T09:22:08.000Z" } ], "analyses": { "subjects": [ "37A40", "37A30", "37A17", "37D40" ], "keywords": [ "symmetric birkhoff sums", "infinite ergodic theory", "universal divergence rate", "universal gap", "ergodic theorem" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1412.1242K" } } }