{ "id": "1412.1157", "version": "v1", "published": "2014-12-03T01:50:07.000Z", "updated": "2014-12-03T01:50:07.000Z", "title": "Partial sums of biased random multiplicative functions", "authors": [ "Marco Aymone", "Vladas Sidoravicius" ], "categories": [ "math.NT", "math.PR" ], "abstract": "Let $\\mathcal{P}$ be the set of the primes. We consider a class of random multiplicative functions $f$ supported on the squarefree integers, such that $\\{f(p)\\}_{p\\in\\mathcal{P}}$ form a sequence of $\\pm1$ valued independent random variables with $\\mathbb{E} f(p)<0$, $\\forall p\\in \\mathcal{P}$. The function $f$ is called strongly biased (towards classical M\\\"obius function), if $\\sum_{p\\in\\mathcal{P}}\\frac{f(p)}{p}=-\\infty$ a.s., and it is weakly biased if $\\sum_{p\\in\\mathcal{P}}\\frac{f(p)}{p} $ converges a.s. Let $M_f(x):=\\sum_{n\\leq x}f(n)$. We establish a number of necessary and sufficient conditions for $M_f(x)=o(x^{1-\\alpha})$ for some $\\alpha>0$, a.s., when $f$ is strongly or weakly biased, and prove that the Riemann Hypothesis holds if and only if $M_{f_\\alpha}(x)=o(x^{1/2+\\epsilon})$ for all $\\epsilon>0$ a.s., for each $\\alpha>0$, where $\\{f_\\alpha \\}_\\alpha$ is a certain family of weakly biased random multiplicative functions.", "revisions": [ { "version": "v1", "updated": "2014-12-03T01:50:07.000Z" } ], "analyses": { "keywords": [ "partial sums", "valued independent random variables", "riemann hypothesis holds", "weakly biased random multiplicative functions", "squarefree integers" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1412.1157A" } } }