{ "id": "1412.0574", "version": "v1", "published": "2014-12-01T18:29:52.000Z", "updated": "2014-12-01T18:29:52.000Z", "title": "Gaps of Smallest Possible Order between Primes in an Arithmetic Progression", "authors": [ "Roger C. Baker", "Liangyi Zhao" ], "comment": "19 pages", "categories": [ "math.NT" ], "abstract": "Let $t \\in \\mathbb{N}$, $\\eta >0$. Suppose that $x$ is a sufficiently large real number and $q$ is a natural number with $q \\leq x^{5/12-\\eta}$, $q$ not a multiple of the conductor of the exceptional character $\\chi^*$ (if it exists). Suppose further that, \\[ \\max \\{p : p | q \\} < \\exp (\\frac{\\log x}{C \\log \\log x}) \\; \\; {and} \\; \\; \\prod_{p | q} p < x^{\\delta}, \\] where $C$ and $\\delta$ are suitable positive constants depending on $t$ and $\\eta$. Let $a \\in \\mathbb{Z}$, $(a,q)=1$ and \\[ \\mathcal{A} = \\{n \\in (x/2, x]: n \\equiv a \\pmod{q} \\} . \\] We prove that there are primes $p_1 < p_2 < ... < p_t$ in $\\mathcal{A}$ with \\[ p_t - p_1 \\ll qt \\exp (\\frac{40 t}{9-20 \\theta}) . \\] Here $\\theta = (\\log q) / \\log x$.", "revisions": [ { "version": "v1", "updated": "2014-12-01T18:29:52.000Z" } ], "analyses": { "subjects": [ "11N13" ], "keywords": [ "arithmetic progression", "sufficiently large real number", "natural number", "exceptional character", "suitable positive constants" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1412.0574B" } } }