{ "id": "1412.0523", "version": "v1", "published": "2014-11-28T14:07:57.000Z", "updated": "2014-11-28T14:07:57.000Z", "title": "Two congruences involving harmonic numbers with applications", "authors": [ "Guo-Shuai Mao", "Zhi-Wei Sun" ], "comment": "12 pages", "categories": [ "math.NT", "math.CO" ], "abstract": "The harmonic numbers $H_n=\\sum_{03$ be a prime. With helps of some combinatorial identities, we establish the following two new congruences: $$\\sum_{k=1}^{p-1}\\frac{\\binom{2k}k}kH_k\\equiv\\frac13\\left(\\frac p3\\right)B_{p-2}\\left(\\frac13\\right)\\pmod{p}$$ and $$\\sum_{k=1}^{p-1}\\frac{\\binom{2k}k}kH_{2k}\\equiv\\frac7{12}\\left(\\frac p3\\right)B_{p-2}\\left(\\frac13\\right)\\pmod{p},$$ where $B_n(x)$ denotes the Bernoulli polynomial of degree $n$. As applications we determine $\\sum_{n=1}^{p-1}g_n$ and $\\sum_{n=1}^{p-1}h_n$ modulo $p^3$, where $$g_n=\\sum_{k=0}^n\\binom nk^2\\binom{2k}k\\quad\\mbox{and}\\quad h_n=\\sum_{k=0}^n\\binom nk^2C_k$$ with $C_k=\\binom{2k}k/(k+1)$.", "revisions": [ { "version": "v1", "updated": "2014-11-28T14:07:57.000Z" } ], "analyses": { "subjects": [ "11B65", "11B68", "05A10", "11A07" ], "keywords": [ "harmonic numbers", "congruences", "applications", "play important roles", "combinatorial identities" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1412.0523M" } } }