{ "id": "1412.0428", "version": "v1", "published": "2014-12-01T11:09:39.000Z", "updated": "2014-12-01T11:09:39.000Z", "title": "Hanf number for the strictly stable cases", "authors": [ "Saharon Shelah" ], "categories": [ "math.LO" ], "abstract": "Suppose t = (T,T_1, p) is a triple of two theories in vocabularies tau subset tau_1 of cardinality lambda and a tau_1-type p over the empty set; here we fix T and assume it is stable. We show the Hanf number for the property: \"there is a model M_1 of T_1 which omits p, but M_1 restricted to tau is saturated\" is larger than the Hanf number of L_{lambda^+, kappa} but smaller than the Hanf number of L_{(2^lambda)^+, kappa} when T is stable with kappa = kappa(T).", "revisions": [ { "version": "v1", "updated": "2014-12-01T11:09:39.000Z" } ], "analyses": { "subjects": [ "03C75", "03C45", "03C55", "03C50" ], "keywords": [ "hanf number", "strictly stable cases", "vocabularies tau subset", "empty set", "cardinality lambda" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1412.0428S" } } }