{ "id": "1411.7688", "version": "v1", "published": "2014-11-27T19:35:04.000Z", "updated": "2014-11-27T19:35:04.000Z", "title": "Absolute Continuity under Time Shift for Ornstein-Uhlenbeck type Processes with Delay or Anticipation", "authors": [ "Jörg-Uwe Löbus" ], "categories": [ "math.PR" ], "abstract": "The paper is concerned with one-dimensional two-sided Ornstein-Uhlenbeck type processes with delay or anticipation. We prove existence and uniqueness requiring almost sure boundedness on the left half-axis in case of delay and almost sure boundedness on the right half-axis in case of anticipation. For those stochastic processes $(X,P_{\\mu})$ we calculate the Radon-Nikodym density under time shift of trajectories, $P_{\\mu}(dX_{\\cdot -t})/P_{\\mu}(dX)$, $t\\in {\\Bbb R}$.", "revisions": [ { "version": "v1", "updated": "2014-11-27T19:35:04.000Z" } ], "analyses": { "subjects": [ "60J65", "60H10" ], "keywords": [ "time shift", "absolute continuity", "anticipation", "sure boundedness", "one-dimensional two-sided ornstein-uhlenbeck type processes" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1411.7688L" } } }