{ "id": "1411.7079", "version": "v1", "published": "2014-11-26T01:16:13.000Z", "updated": "2014-11-26T01:16:13.000Z", "title": "Initial-boundary value problem of the Navier-Stokes system in the half space", "authors": [ "Tongkeun Chang", "Bum Ja Jin" ], "categories": [ "math.AP" ], "abstract": "In this paper, we study the initial-boundary value problem of the Navier-Stokes system in the half space. We prove the unique solvability of the weak solution on some short time interval (0, T) with the velocity in $C^{\\alpha, \\frac12 \\alpha} ({\\mathbb R}^n_+ \\times (0, T)), 0 < \\alpha < 1$, when the given initial data is in $C^\\alpha ({\\mathbb R}^n_+)$ and the given boundary data is in $C^{\\alpha, \\frac12 \\alpha} ({\\mathbb R}^{n-1} \\times (0, T))$. Our result generalizes the result in [30] considering nonhomogeneous Dirichlet boundary data.", "revisions": [ { "version": "v1", "updated": "2014-11-26T01:16:13.000Z" } ], "analyses": { "keywords": [ "initial-boundary value problem", "navier-stokes system", "half space", "considering nonhomogeneous dirichlet boundary data", "short time interval" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1411.7079C" } } }